h5py 2.5.0-3 source package in Ubuntu

Changelog

h5py (2.5.0-3) unstable; urgency=medium

  * Add missing install dependencies for debug packages.
  * d/control: use secure VCS-Git URI.

 -- Ghislain Antony Vaillant <email address hidden>  Tue, 26 Jan 2016 07:46:33 +0000

Upload details

Uploaded by:
Debian Science Team
Uploaded to:
Sid
Original maintainer:
Debian Science Team
Architectures:
any all
Section:
python
Urgency:
Medium Urgency

See full publishing history Publishing

Series Pocket Published Component Section

Downloads

File Size SHA-256 Checksum
h5py_2.5.0-3.dsc 2.6 KiB c5da0947268f352ee081411a25ca7fbe365bb1b3cd83f82f836fdebef9a4b3c1
h5py_2.5.0.orig.tar.gz 231.5 KiB ec526191b9bbf7a937b7cdf1ea60984f50d889b45900d9a704bb35c93ece65df
h5py_2.5.0-3.debian.tar.xz 7.0 KiB e96a0eab9d964b85c0e755b009571fe7bd5e0793dcabe8cb81d33c6d46b0feb9

Available diffs

No changes file available.

Binary packages built by this source

python-h5py: general-purpose Python interface to hdf5 (Python 2)

 HDF5 for Python (h5py) is a general-purpose Python interface to the
 Hierarchical Data Format library, version 5. HDF5 is a versatile, mature
 scientific software library designed for the fast, flexible storage of
 enormous amounts of data.
 .
 From a Python programmer's perspective, HDF5 provides a robust way to
 store data, organized by name in a tree-like fashion. You can create
 datasets (arrays on disk) hundreds of gigabytes in size, and perform
 random-access I/O on desired sections. Datasets are organized in a
 filesystem-like hierarchy using containers called "groups", and accessed
 using the tradional POSIX /path/to/resource syntax.
 .
 H5py provides a simple, robust read/write interface to HDF5 data from
 Python. Existing Python and Numpy concepts are used for the interface;
 for example, datasets on disk are represented by a proxy class that
 supports slicing, and has dtype and shape attributes. HDF5 groups are
 presented using a dictionary metaphor, indexed by name.
 .
 This package provides h5py for the Python 2 interpreter.

python-h5py-dbg: debug extension for h5py (Python 2)

 HDF5 for Python (h5py) is a general-purpose Python interface to the
 Hierarchical Data Format library, version 5. HDF5 is a versatile, mature
 scientific software library designed for the fast, flexible storage of
 enormous amounts of data.
 .
 From a Python programmer's perspective, HDF5 provides a robust way to
 store data, organized by name in a tree-like fashion. You can create
 datasets (arrays on disk) hundreds of gigabytes in size, and perform
 random-access I/O on desired sections. Datasets are organized in a
 filesystem-like hierarchy using containers called "groups", and accessed
 using the tradional POSIX /path/to/resource syntax.
 .
 H5py provides a simple, robust read/write interface to HDF5 data from
 Python. Existing Python and Numpy concepts are used for the interface;
 for example, datasets on disk are represented by a proxy class that
 supports slicing, and has dtype and shape attributes. HDF5 groups are
 presented using a dictionary metaphor, indexed by name.
 .
 This package provides h5py for the Python 2 debug interpreter.

python-h5py-doc: h5py documentation

 HDF5 for Python (h5py) is a general-purpose Python interface to the
 Hierarchical Data Format library, version 5. HDF5 is a versatile, mature
 scientific software library designed for the fast, flexible storage of
 enormous amounts of data.
 .
 From a Python programmer's perspective, HDF5 provides a robust way to
 store data, organized by name in a tree-like fashion. You can create
 datasets (arrays on disk) hundreds of gigabytes in size, and perform
 random-access I/O on desired sections. Datasets are organized in a
 filesystem-like hierarchy using containers called "groups", and accessed
 using the tradional POSIX /path/to/resource syntax.
 .
 H5py provides a simple, robust read/write interface to HDF5 data from
 Python. Existing Python and Numpy concepts are used for the interface;
 for example, datasets on disk are represented by a proxy class that
 supports slicing, and has dtype and shape attributes. HDF5 groups are
 presented using a dictionary metaphor, indexed by name.
 .
 This package provides the documentation for h5py.

python3-h5py: general-purpose Python interface to hdf5 (Python 3)

 HDF5 for Python (h5py) is a general-purpose Python interface to the
 Hierarchical Data Format library, version 5. HDF5 is a versatile, mature
 scientific software library designed for the fast, flexible storage of
 enormous amounts of data.
 .
 From a Python programmer's perspective, HDF5 provides a robust way to
 store data, organized by name in a tree-like fashion. You can create
 datasets (arrays on disk) hundreds of gigabytes in size, and perform
 random-access I/O on desired sections. Datasets are organized in a
 filesystem-like hierarchy using containers called "groups", and accessed
 using the tradional POSIX /path/to/resource syntax.
 .
 H5py provides a simple, robust read/write interface to HDF5 data from
 Python. Existing Python and Numpy concepts are used for the interface;
 for example, datasets on disk are represented by a proxy class that
 supports slicing, and has dtype and shape attributes. HDF5 groups are
 presented using a dictionary metaphor, indexed by name.
 .
 This package provides h5py for the Python 3 interpreter.

python3-h5py-dbg: debug extension for h5py (Python 3)

 HDF5 for Python (h5py) is a general-purpose Python interface to the
 Hierarchical Data Format library, version 5. HDF5 is a versatile, mature
 scientific software library designed for the fast, flexible storage of
 enormous amounts of data.
 .
 From a Python programmer's perspective, HDF5 provides a robust way to
 store data, organized by name in a tree-like fashion. You can create
 datasets (arrays on disk) hundreds of gigabytes in size, and perform
 random-access I/O on desired sections. Datasets are organized in a
 filesystem-like hierarchy using containers called "groups", and accessed
 using the tradional POSIX /path/to/resource syntax.
 .
 H5py provides a simple, robust read/write interface to HDF5 data from
 Python. Existing Python and Numpy concepts are used for the interface;
 for example, datasets on disk are represented by a proxy class that
 supports slicing, and has dtype and shape attributes. HDF5 groups are
 presented using a dictionary metaphor, indexed by name.
 .
 This package provides h5py for the Python 3 debug interpreter.