h5py 2.5.0-2 source package in Ubuntu
Changelog
h5py (2.5.0-2) unstable; urgency=medium * Add debug extension packages. Thanks to Picca Frederic-Emmanuel (Closes: #793789) * d/control: cme fix, wrap and sort, update descriptions. * Add examples to doc package. * Move documentation generation to arch-indep targets. * Add autopkgtest testsuite. * Simplify clean target. -- Ghislain Antony Vaillant <email address hidden> Sun, 24 Jan 2016 11:44:54 +0000
Upload details
- Uploaded by:
- Debian Science Team
- Uploaded to:
- Sid
- Original maintainer:
- Debian Science Team
- Architectures:
- any all
- Section:
- python
- Urgency:
- Medium Urgency
See full publishing history Publishing
Series | Published | Component | Section |
---|
Downloads
File | Size | SHA-256 Checksum |
---|---|---|
h5py_2.5.0-2.dsc | 2.6 KiB | d6a1443da5a2caef87fa25d15602cc05575b3aa2092b43a144d3b41454a68e48 |
h5py_2.5.0.orig.tar.gz | 231.5 KiB | ec526191b9bbf7a937b7cdf1ea60984f50d889b45900d9a704bb35c93ece65df |
h5py_2.5.0-2.debian.tar.xz | 6.9 KiB | 038e6abd4178ddfa12878f33276b81cd06f2e77066c6d5e0e387dd9b99c01e5f |
Available diffs
No changes file available.
Binary packages built by this source
- python-h5py: general-purpose Python interface to hdf5 (Python 2)
HDF5 for Python (h5py) is a general-purpose Python interface to the
Hierarchical Data Format library, version 5. HDF5 is a versatile, mature
scientific software library designed for the fast, flexible storage of
enormous amounts of data.
.
From a Python programmer's perspective, HDF5 provides a robust way to
store data, organized by name in a tree-like fashion. You can create
datasets (arrays on disk) hundreds of gigabytes in size, and perform
random-access I/O on desired sections. Datasets are organized in a
filesystem-like hierarchy using containers called "groups", and accessed
using the tradional POSIX /path/to/resource syntax.
.
H5py provides a simple, robust read/write interface to HDF5 data from
Python. Existing Python and Numpy concepts are used for the interface;
for example, datasets on disk are represented by a proxy class that
supports slicing, and has dtype and shape attributes. HDF5 groups are
presented using a dictionary metaphor, indexed by name.
.
This package provides h5py for the Python 2 interpreter.
- python-h5py-dbg: debug extension for h5py (Python 2)
HDF5 for Python (h5py) is a general-purpose Python interface to the
Hierarchical Data Format library, version 5. HDF5 is a versatile, mature
scientific software library designed for the fast, flexible storage of
enormous amounts of data.
.
From a Python programmer's perspective, HDF5 provides a robust way to
store data, organized by name in a tree-like fashion. You can create
datasets (arrays on disk) hundreds of gigabytes in size, and perform
random-access I/O on desired sections. Datasets are organized in a
filesystem-like hierarchy using containers called "groups", and accessed
using the tradional POSIX /path/to/resource syntax.
.
H5py provides a simple, robust read/write interface to HDF5 data from
Python. Existing Python and Numpy concepts are used for the interface;
for example, datasets on disk are represented by a proxy class that
supports slicing, and has dtype and shape attributes. HDF5 groups are
presented using a dictionary metaphor, indexed by name.
.
This package provides h5py for the Python 2 debug interpreter.
- python-h5py-doc: h5py documentation
HDF5 for Python (h5py) is a general-purpose Python interface to the
Hierarchical Data Format library, version 5. HDF5 is a versatile, mature
scientific software library designed for the fast, flexible storage of
enormous amounts of data.
.
From a Python programmer's perspective, HDF5 provides a robust way to
store data, organized by name in a tree-like fashion. You can create
datasets (arrays on disk) hundreds of gigabytes in size, and perform
random-access I/O on desired sections. Datasets are organized in a
filesystem-like hierarchy using containers called "groups", and accessed
using the tradional POSIX /path/to/resource syntax.
.
H5py provides a simple, robust read/write interface to HDF5 data from
Python. Existing Python and Numpy concepts are used for the interface;
for example, datasets on disk are represented by a proxy class that
supports slicing, and has dtype and shape attributes. HDF5 groups are
presented using a dictionary metaphor, indexed by name.
.
This package provides the documentation for h5py.
- python3-h5py: general-purpose Python interface to hdf5 (Python 3)
HDF5 for Python (h5py) is a general-purpose Python interface to the
Hierarchical Data Format library, version 5. HDF5 is a versatile, mature
scientific software library designed for the fast, flexible storage of
enormous amounts of data.
.
From a Python programmer's perspective, HDF5 provides a robust way to
store data, organized by name in a tree-like fashion. You can create
datasets (arrays on disk) hundreds of gigabytes in size, and perform
random-access I/O on desired sections. Datasets are organized in a
filesystem-like hierarchy using containers called "groups", and accessed
using the tradional POSIX /path/to/resource syntax.
.
H5py provides a simple, robust read/write interface to HDF5 data from
Python. Existing Python and Numpy concepts are used for the interface;
for example, datasets on disk are represented by a proxy class that
supports slicing, and has dtype and shape attributes. HDF5 groups are
presented using a dictionary metaphor, indexed by name.
.
This package provides h5py for the Python 3 interpreter.
- python3-h5py-dbg: debug extension for h5py (Python 3)
HDF5 for Python (h5py) is a general-purpose Python interface to the
Hierarchical Data Format library, version 5. HDF5 is a versatile, mature
scientific software library designed for the fast, flexible storage of
enormous amounts of data.
.
From a Python programmer's perspective, HDF5 provides a robust way to
store data, organized by name in a tree-like fashion. You can create
datasets (arrays on disk) hundreds of gigabytes in size, and perform
random-access I/O on desired sections. Datasets are organized in a
filesystem-like hierarchy using containers called "groups", and accessed
using the tradional POSIX /path/to/resource syntax.
.
H5py provides a simple, robust read/write interface to HDF5 data from
Python. Existing Python and Numpy concepts are used for the interface;
for example, datasets on disk are represented by a proxy class that
supports slicing, and has dtype and shape attributes. HDF5 groups are
presented using a dictionary metaphor, indexed by name.
.
This package provides h5py for the Python 3 debug interpreter.